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We explain why we feel the objections raised in the preceding Comment do not apply. We also
take the opportunity to further clarify our renormalization scheme and the physical and conceptual
differences appearing in the cases d < 2 and d > 2, respectively, where d is the substrate dimension.
Furthermore, we link our calculations to recent progress within the framework of the directed-
polymer representation [M. Liassig (unpublished)], by which our results are confirmed on considerably

more general grounds.
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In the preceding comment [1], T. Sun, based on his
work with M. Plischke [2], raises several strong objec-
tions to both the methods we have applied and the re-
sults we have obtained in our recent two-loop dynamic
renormalization-group analysis of the Burgers—Kardar-
Parisi-Zhang (KPZ) equation [3]. As is properly ex-
plained in the comment [1], the qualitative differences in
the results and conclusions of Refs. [2] and [3], both pa-
pers embarking to extend the previous one-loop analysis
[4,5] to next order, are indeed severe and require clarifi-
cation. As we shall explain in more detail, we find that
Sun’s arguments to discard our renormalization scheme
and scaling analysis are invalid; in fact, most of the is-
sues have already been addressed in our paper [3]. Yet,
Sun questions our main conclusion for substrate dimen-
sions d > 2, namely the nonexistence of a finite strong-
coupling fixed point within a perturbational approach in
that regime (including the two-dimensional case), and
the values z. = 2 and thus x. = 0 for the dynamic and
roughness exponent at the dynamic phase transition, al-
though these are fully in accord with the scaling analysis
by Doty and Kosterlitz [6]. However, all these results
have recently been confirmed to any order in perturba-
tion theory by M. Lissig in a completely independent
approach using the directed-polymer representation [7],
and thus seem to render Sun’s criticism towards our find-
ings obsolete.

We now turn to address his objections in detail; we
shall use the notations of the preceding comment [1]. To
start with, we agree that one of the main differences in
the two calculations lies in the absence of (height) field
renormalization in Ref. [3], while Sun and Plischke, in
contrast, claim a singular contribution to the vertex func-
tion I'11(k,w) (T'j;, in our notation [3]) which may not
be absorbed into a renormalization of the diffusion coeffi-
cient v. Our conclusion in Ref. [3] is based on very famil-
iar arguments in dynamic renormalization-group theory
[see, e.g., Ref. [8], Egs. (8.16) and (8.17), for the, in this
respect, very much related case of the critical dynamics
of model B]. Namely, all loop contributions to I'1q(k,w)
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vanish at k = 0, due to the wave vector dependence of
the vertex, i.e.,

Fn(O,w) = tw (]_)

holds to any order in perturbation theory, and in this
sense constitutes an exact relation [9]. Equation (1) is
certainly valid for any finite value of the ultraviolet mo-
mentum cutoff A; hence it still remains true in the limit
A — oo, from which the singularities in 1/¢ are to be
inferred in the dimensional regularization scheme, if the
limit k — O is taken first. Thus by the conventional
choice of the normalization conditions (see Ref. [8]), it
follows that the height fields do not renormalize. (Note
that the assignment of Z factors to physical quantities is
not unique; but the number of independent renormaliza-

. tion constants stays, of course, fixed, see footnote [39] in

Ref. [3].)

The above procedure does not cause any problems, as
long as it is assured that the regime of the infrared singu-
larities is carefully avoided [10,11]. In a massless field the-
ory, such as for the Burgers—KPZ problem, one has to be
careful here, as we have noted already [3]; yet the above
requirement is definitely fulfilled by taking the normal-
ization point at finite frequency, i.e., k = 0, iw/2v = u?
[3]; note that iw effectively acquires the role of a “mass”
parameter.

Sun, however, criticizes this choice and states that we
employed an incorrect normalization point [1] in our cal-
culations, elaborating on the point that, in his opinion,
we should have rather used a normalization point at fi-
nite wave vector instead of finite frequency. But, when-
ever the normalization point lies well outside the (in-
frared) critical region, its specific choice cannot alter any
(physical) results. This is assured by either fixing the
momentum at k2 = 2 (the choice in Ref. [2]), or, equiv-
alently, by fixing the frequency at a finite value (our pre-
scription). The fact that the theory is massless merely
implies that wave vector and frequency at the normaliza-
tion point must not be taken to be zero simultaneously.
Furthermore, both choices must indeed lead to identi-
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cal conclusions, and neither “violates the principles of
renormalization-group theory” [1]. Also, as there exists
no meaningful static limit of the Burgers—KPZ equation
for general dimensions d # 1, and because in a scaling
theory all variables are generically equivalent (there is
no such concept as a basic scaling variable [1] apart from
matters of convenience and physical intuition), there ap-
pears to be no reason why the choice of finite momentum
should in any respect be preferential a priori. It should
thus be clear that indeed My = My = --- = 0 in Eq. (3)
of Ref. [1]. We are not inclined to embark on any specula-
tion as to why, despite these facts, there appear singular
terms in the k-independent part of I'11(k,w) in the cal-
culations of Ref. [2].

In his comment, Sun also states that the k-dependent
parts [IV; and N, in his Eq. (3)] did not acquire singular
contributions in our paper, thus leading us to a “free-
field result” of the Edwards-Wilkinson type [1]. We do
not agree with this statement. In fact, our two-loop con-
tributions to Z, [Eq. (3.44) in Ref. [3]] do not vanish, and
even in the disputed case of two substrate dimensions we

find
a5
Z,(d=2) =1—E+0(§3) (2)

[using F, (d = 2) = 8 according to Eq. (A38) in Ref. [3]].
Therefore, we feel that Sun’s assertion that in our anal-
ysis I'11(k,w) was not renormalized [1] is wrong, and
his following claims that we were merely investigating
the scaling of the Edwards-Wilkinson equation [12] are
misleading (the coefficient for the noise correlation D is
renormalized, too, anyway). Neither does our renormal-
ization scheme “remove the nonlinear term from the KPZ
equation in d = 2” [cf. Eq. (2)], as is implicated in the
comment [1]. (Sun’s criticism towards our “partial € ex-
pansion” scheme shall be addressed below.)

Sun also claims to find some problems with our scal-
ing analysis in Sec. IIT of Ref. [3]. We note that our
scaling analysis is based on entirely standard and well-
known procedures and mathematical techniques, such as
the method of characteristics for solving partial differ-
ential equations (see also Refs. [10,11]). We do not “use
three basic units to measure the canonical dimension” [1]
of the vertex functions, and we do not understand why
the author of the preceding comment assumes us having
done so. The factors vy and Dg in Egs. (2.15)—(2.17)
of Ref. [3] could have been absorbed into other quanti-
ties and parameters, of course, and our equations may
be restated in a different way [Eq. (8) in Ref. [1]]. Yet,
obviously, no real progress has been achieved here. The
origin of the flow-dependent expressions v (l) and D(l) ap-
pearing in our Eqgs. (3.54) and (3.55) rests in the solution
of the renormalization-group equation via the method
of characteristics. Our Egs. (3.56)—(3.58) are in accord
with the postulated scaling behavior of the Burgers-KPZ
equation [cf. Eq. (1.4) in Ref. [3]], and they are valid at
any fixed point g* < oo of the renormalization-group flow
(not just at the Gaussian fixed point, as Sun attempts to
suggest [1]), and neither do they violate the statistical
symmetry of Galilean invariance. Furthermore, our scal-
ing analysis parallels the corresponding analysis for the

nonlinear o model [13]. Of course, the Callen-Symanzik
equation may be analyzed with different mathematical
techniques as well. In addition, we would like to mention
that Lassig confirms our Callen-Symanzik equations in
his recent work [7].

We now come to the important conceptual differences
in treating the situations d < 2, and d > 2, respectively,
which, of course, imply very distinct physical situations.
In order to treat both regimes on the same footing as
long as possible, we demonstrated in Sec. III A of Ref. [3]
how to one-loop order the Feynman diagrams may sim-
ply be evaluated at fized dimension d, without any ex-
pansion in € = d — 2 whatsoever, within both Wilson’s
k shell and the dimensional regularization scheme. Al-
ready at this level it becomes obvious that an € expansion
below d. = 2, which serves as the lower critical dimen-
sion for the dynamic roughening phase transition [4,5], is
rendered at least doubtful due to the divergence of the
(strong-coupling) fixed point at d = 3/2. But, even in
the absence of a small parameter, the renormalization-
group method may still remain a valid concept. More-
over, an inclusion of the physically interesting situation
d = 1 into the renormalization scheme is highly desirable
for the following reasons. First, the one-dimensional case
may serve as a check to the (extensive) algebra. Second,
it allows for systematic tests on the results for the scal-
ing functions calculated within the mode-coupling (self-

consistent one-loop) approximation at d = 1 [14]. We
shall return to this topic in a forthcoming publication
[15].

As we have demonstrated and discussed at length in
our paper (see Sec. III A of Ref. [3]), this goal may
readily be achieved once one becomes aware of the fact
that there are two very distinct origins for the appear-
ance of dimension-dependent factors. Namely, there are,
on one hand, purely geometric factors stemming from
the angular dependences of the momentum space inte-
grals, appearing quite irrespective of the employed renor-
malization procedure and, on the other hand, poles in
1/(d — 2) stemming from the specific treatment of the
ultraviolet singularities within the dimensional regular-
ization scheme. The latter would not emerge at all if,
e.g., a cutoff regularization procedure were used instead.
We believe we have made it quite clear that, at least con-
ceptually, one should indeed strictly avoid mixing these
two categories of d-dependent factors.

The conceptual importance of the distinction between
the different d-dependent factors can be illustrated fur-
ther by using Sun’s Eq. (6) [1]. If one is interested in the
value of the integral I;; in the limit d — 2 and cutoff
A — 00, one has to distinguish between the cases where
the limits are performed in the order (i) d — 2 first and
then A — oo or (ii) in the reverse order. At d = 2, indeed,
there is no singular contribution to that integral, simply
because it is zero at any finite value of the ultraviolet cut-
off, i.e., the corresponding term just does not appear in
the perturbation theory at two dimensions. Only when
the cutoff is pushed to infinity first, and the dimensional
regularization method is employed does one obtain Sun’s
Eq. (6). One way to proceed would be to argue that due
to the apparent cancellation of factors (2 — d) the first
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term proportional to ¢; becomes finite, and hence should
not be taken into account in a minimal-subtraction pro-
cedure. This line of argument would lead to a (singu-
lar) contribution ¢2/(2 — d) to the Z factor. Since this
term is of the form 1/¢ it could, in general, contribute to
the corresponding (physically observable) flow function.
This, however, would contradict the fact that the inte-
gral I; is identically zero at d = 2 for any finite value
of the ultraviolet cutoff, i.e., there should be no contri-
bution of I;; whatsoever to any observable quantity at
d = 2. Hence, one would be in danger of falsely retaining
the pole c2/¢, in spite of the fact that the entire integral
simply vanishes in two dimensions. Now, our line of ar-
gument is quite different. Since the prefactor (d — 2) is
of purely geometric origin, one has to keep both terms,
namely c; /e and cz/€2. The fact that all flow functions
have to be nonsingular at d. implies that all terms orig-
inating in 1/e2 poles, like the one o cz, must disappear
in the expressions for the ¢ and B functions [11]. Al
those terms hence must be (and, in fact, are) cancelled
by corresponding ones stemming from the one-loop con-
tributions, when the latter are re-expressed in terms of
renormalized quantities. Thus the distinction between
the different origin of the d—dependent factors allows us
to prove that, whenever an expansion near two dimen-
sions is possible, both limit procedures, (i) and (ii), do
indeed yield identical results. This is actually a prereg-
uisite for the applicability of the method of dimensional
regularization.

In addition, by separating factors “d” and as we
suggest, one does avoid severe errors in treating the sit-
uation at fixed dimensions away from d = 2, e.g., by
neglecting the pole x ¢; in Eq. (6) of Ref. [1] one would
in effect miss a contribution to the corresponding Z fac-
tor and for example violate the fluctuation-dissipation
theorem valid in one dimension. At d = 1 the angular
integration would yield a finite result, and the remain-
ing one-dimensional k integral diverges in the ultraviolet
for d — 2; but it is exactly this singularity that needs
to be taken into account. Thus upon applying sufficient
care and treating the (2 — d) terms of different origin
separately, we do not “violate the basic principle of con-
sistency” [1]. Rather, as we have noted in Ref. 3], we
hereby cure a potentially dangerous problem of the di-
mensional regularization scheme, which has proven to be
a most valuable tool indeed, but must not be employed
in too naive a manner.

Our procedure hence permits us, in principle at least,
to investigate dimensions further away from d. = 2.
Quite generally, however, by applying the dimensional
regularization scheme to massless field theories at fixed
d is plagued by the appearance of new infrared singular-
ities at each additional order in perturbation theory (see
Ref. [16]). Yet we may overcome this difficulty, and still
preserve the benefits described above, by expanding the
one-dimensional k-space integrals occurring after the an-
gular integrations have been performed, with respect to
€ = d—2, and only retain the (ultraviolet) singular terms,
but keeping the full d dependence stemming from the an-
gular contributions [3]. This is possible because any in-
frared problems can emerge solely from the integrals over
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|k|, of course. Our prescription, which we have (perhaps
misleadingly) termed the “partial € expansion,” may thus
be summarized as follows: (i) retain the full information
of the angular integrations (i.e., keep all factors d there
without modifications), and (ii) treat the remaining one-
dimensional integral over |k| within the dimensional regu-
larization, € expansion, and minimal-subtraction scheme.

In order to proceed towards a controlled series expan-
sion, we now have to deal with the situations below and
above d. = 2 separately [3]. For d < 2, we observe that
the strong-coupling fixed point g7, which at d = 1 de-
scribes the scaling behavior of the Burgers-KPZ equation
correctly [4,5] (its values to one- and two-loop order re-
markably being identical [3]), approaches zero for d — 0.
Therefore, for small d the “naive” perturbation theory
simply applies, as g is small in that regime. The situa-
tion for d < 2 may then be viewed as an expansion in d,
which is basically equivalent to a power series in g7 « d;
one simply has to expand the loop results to correct or-
der [15]. Clearly, this scheme breaks down at some finite
dimension d > 0, an upper limit to which is set by the
divergence of g}: to one-loop order at d = 3/2 and to
two-loop order at d. = 2. According to Lissig’s recent
results (see below) [7], there are good reasons to believe
that this divergence will not be shifted beyond d. = 2 in
higher orders of perturbation theory. The emerging phys-
ical picture for d < 2 is therefore the following: there is
a single finite and (infrared) stable strong-coupling fixed
point governing the scaling behavior.

According to these findings, specifically the divergence
of g} at d. = 2, any kind of (2—¢€) expansion as in Ref. [2]
seems extremely doubtful. Moreover, the appearance of
a finite fixed point in Sun and Plischke’s two-loop calcu-
lation at d. = 2, i.e., a fixed point of order O(€°), not
existing to first order in perturbation theory, appears to
be hardly reconcilable with the € expansion concept, ac-
cording to which any meaningful fixed point should be of
order O(e), at least. To us, it is thus not at all surprising
that the ensuing “strong-coupling” critical exponents do
not agree with the simulations [2].

Above d. = 2, on the other hand, one may uti-
lize the fact that there appears a critical fixed point
g « € = d — 2. Performing a “full” (2 + €) expansion
for d > 2 hence provides a controlled perturbation series,
but only for this unstable fixed point, which physically
describes a dynamic phase transition between the regime
described by the Edwards-Wilkinson scaling exponents,
[12] and the strong-coupling region, which is not acces-
sible by these perturbational means. In addition, the
“Gaussian” fixed point may of course be treated, as well
as the weak-coupling crossover regime [3].

The application of the renormalization-group method
to infer the correct scaling behavior from the ultraviolet
singularities is necessarily based on the renormalizabil-
ity of the field theory describing the Burgers-KPZ equa-
tion, which is questioned in Sun’s comment for the case
d > 1. Yet again, we have already fully explained in the
final paragraph of Sec. IIT A of Ref. [3] that, very simi-
lar to what happens for the nonlinear o model (compare
Ref. [13]), although the theory is apparently nonrenor-
malizable from a naive power-counting point of view, the
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appearance of an ultraviolet-stable fixed point ensures
its renormalizability above d. = 2, which is thus not “an
open issue” [1]. We find it somewhat surprising that
Sun cites the work of Doty and Kosterlitz [6] in order
to strengthen his standpoint, as their scaling arguments
are, in fact, fully in accord with our findings [3].

On the basis of the directed-polymer representation
and by utilizing a replica renormalization technique,
Lassig [7] has recently investigated the structure of the
perturbation theory for d > 2 carefully. He manages to
prove that hyperscaling holds at the roughening transi-
tion, and, as a consequence, that the critical exponents
at the unstable fixed point are z. = 2 and x. = 0
to any order of perturbation theory. Furthermore, he
demonstrates that at d. = 2 there appears a singular-
ity in the flow of the renormalized coupling as obtained
in the minimal-subtraction scheme. Therefore, the pa-
rameter space becomes divided into an infrared (strong-
coupling) and ultraviolet regime, with only the latter be-
ing accessible to perturbational approaches [7]. Thus our
conclusions, both for the critical values of the dynamic
and roughness exponent, as well as regarding the non-
existence of a perturbational strong-coupling fixed point,
are confirmed on a much more general basis.

Finally, we would like to point out that the (2 + €) ex-
pansion cannot be extended beyond d = 4. This break-
down becomes obvious from the divergence of the geo-
metric factor

Cq=T(2-d/2) /2% 1x?/? ()
for d — 4, which appears as an overall prefactor to each
of the integrals in perturbation theory (cf. Appendix A2
in Ref. [3]). In the same manner, the regularization of the
perturbation series breaks down at d = 4 in the directed-
polymer representation [7]. One may be tempted to
identify this marginal dimension with a supposed upper
critical dimension for the roughening transition, beyond
which the critical exponents assume their mean-field val-
ues, and z = 2, x = 0 also hold in the strong-coupling
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regime [7]. A more physical argument [17] rests on our
result for the (transverse) correlation length exponent [3]

1/v; = e+ O(€®) (4)

which we conjecture to be valid to any order in € as well.
This result must, however, be wrong when the mean-
field value v, = 1/2 (or, equivalently, v = z.v, = 1)
is reached, because this, of course, constitutes a lower
bound. Thus again d = 4 is found as a borderline dimen-
sion. Previously, Halpin-Healy has argued in favor of
an upper critical dimension d = 4 within his functional
renormalization-group technique [18]. Also, in a recent
mode-coupling analysis [19], very peculiar and interest-
ing behavior is found above d = 4, namely the occurrence
of a “glassy” solution with a finite Edwards-Anderson
order parameter. In our opinion, a thorough study of
the Burgers-KPZ problem in the vicinity of four dimen-
sions, preferably by some kind of controlled expansion
near d = 4, would be highly desirable.

Summarizing, we feel that the differences in the results
of Refs. [2] and [3] can basically be attributed to an in-
correct finite field renormalization in Sun and Plischke’s
work [2]. With regard to our conclusions at physical di-
mensions, the scaling exponents in d = 1 had already
been known exactly, while our findings for d > 2 have
recently been confirmed quite independently and on a
much broader basis [7]. We do hope that this exchange
of arguments may finally help to clarify the situation,
such that further attention may focus on the remaining
open and indeed really intriguing issues.
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